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Abstract

We give simple examples of linear programs which use many iterations

for the simplex algorithm, emphasizing an algebraic point of view.





Some Linear Programs Requiring Many Pivots

In this note we construct some examples of linear programs which

are troublesome for the simplex algorithm. We shall consider two rules

for choosing entering variables: most negative reduced cost and maximum

objective function improvement. The examples constructed here use essen-

tially the same ideas as in [1, 2, 3], However, we emphasize an algebraic

point of view rather than a geometric one. Also, the numbers may be some-

what neater than in previous constructions.

The basic building block for our examples is the program

Max *1 x
l

X
2

z
l

1

9 1

11 1 1

27 13

28 14

29 1 19

x
1

- 8x» - 2z.. <_ 1

2x. + 8x
2
- 2z

1
<_ 28

x- - 6x
2
+ z. <_ 42

x
2 — 1

The simplex algorithm with most negative reduced cost rule for

entering variable produces the sequence of six iterations above. Note

that the variable x_ starts at zero, goes to its upper limit, returns to

zero, then back to its upper limit. To construct harder problems we

replace the constraint x. <_ 1 by a more complicated system of constraints,

so that the process of increasing x- from zero to its upper limit requires

several steps. The next example is:
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Max
*l

x., - 8x
2

- 2z
1

<_ 1

2^ + 8x
2

- 2z
x

<_ 700

Xl - 6x
2
+ z

1
<_ 1050

x
2

x
3

z
L

z
2

233 29 1 19

235 29 1 1 19

699 349

700 350

729 29 1 495 19

X
2

" 8x
3 " 2z

2 - 1

2x
2
+ 8x

3
- 2z

2
<_ 28

X
2 " 6x

3
+ Z

2 — ^ 2

x
3 H

The constraints governing x- are the same as those governing x. in

our first example—we have added one to the subscripts. Thus when x«

increases from zero to 29 in the first and third (...) six iterations

are required.

The second (...) describes the sequence of iterations during which

x« decreases from 29 to zero. It is essential that while this happens

x_ and z„ also return to zero, since otherwise the third (...) would not

require a full six iterations. Fortunately, the pivots in the second

(...) are precisely those in our first example in reverse order.* Thus

*This "reverse order" property was crucial to the Klee-Minty and
Jeroslow constructions. Here it is not essential because our building
block has a "forward, backward, forward" character rather than a "forward,
backward" character as in the earlier constructions.
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the first pivot in the second (...) has x„ = 28, x_ =0, z_ = 14, the

next has x„ = 27, x~ 0, z. = 13 and so forth. Our second example thus

uses 21 iterations.

In general the next example is obtained from the preceding one by

increasing the number of variables by two and the number of constraints

by three. We add one to the subscript of all variables in the preceding

problem to obtain all but three of the constraints for our new problem.

The remaining constraints are x - 8x~ - 2z <_ 1, 2x^ + 8x„ - 2z
1

<_ 24M + 4,

and x. - 6x
?
+ z < 36M + 6 where M is the optimal objective function

value of the previous problem. The new problem will have optimal solution

x, = 25M + 4, x = M, and z., = 17M + 2.

If the old problem uses k iterations the new problem uses 3k + 3

iterations. The problems constructed in this way have sparse constraint

matrices in which all coefficients are +1, 2, 6, or 8. However, the

right-hand sides do grow exponentially (for further discussion of this

issue see [3]). All intermediate feasible solutions are integer.

Finally, we wish to show how this construction can be modified to

make the simplex algorithm behave badly when the entering variable pro-

ducing the largest objective function increase is used. In our first

example, this algorithm would go from x. =1, x.= 0, z =0 to x. =27,

x„ = 0, z. = 13. To prevent this we add the constraint z. - w <_ .6.

Now the choice will be between (9, 1, 0) and (2.2, 0, .6) so the first

will be chosen. Similarly, we prevent the algorithm going from (11, 1, 1)

to (29, 1, 19) by adding the constraint -x + 8x„ + 2z. - v-< 8.5.

Finally, we add the constraints -x, + 8x„ + z <_ 1 and -x. - 9x„ + 2z- <_ .1
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to insure that when x goes from its maximum to zero the other variables

do also.

As before, we can construct a sequence of problems. The new problem

is obtained from the old one by adding one to the subscript of all the

variables in the old problem. Then we add seven new constraints. Three

of these are the same as those added for the most-negative-cost example

(x. - 8x„ - 2z. ^.1, etc.). The others are the four constraints de-

scribed in the preceding paragraph.

The second problem and its sequence of iterations are shown on the

next page. The constraint -x~ + 8x» + z„ ^_ 1 does not become tight at

any iteration. Its effect appears at the iteration following x. = 535.8,

x» = 10.2, x, = 1. Without this constraint the next solution would be

(699, 0,1). The effect of -x„ - 9x„ + 2z
2

<_ .1 appears at

(663.8, 2.2, 0). It is curious that these constraints have a substantial

adverse effect on this version of the simplex algorithm. Similar remarks

apply to the v. ,w. constraints which could be eliminated by inspection >

We hope that some of the techniques developed here will be useful

in further study of the simplex algorithm, including the open problems

in [3].
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Max *1 3^ X
2

X
l ~ **

X
2 ~ 2z

l — 1

1

2x, + 8x
2

- 2z., <_ 700 9 1

73 9

x, - 6x
2
+ z <_1050 82.6 10.2

89 11
217 27

225 28
-Xj^ + 8x

2
+ Iz - v <_ 8.5 229 28.5

z, - w. <_ .6

-Xj^ + 8x
2
+ z < 1

-j^ - 9x
2
+ 2z

x
<_ .1

x
2

- 8x~ - 2z» <_ 1

x - 6x
3
+ z

2
<_ 42

233 29

234.2 29

235 29

371 20.5
523 11

535.8 10.2
663.8 2.2

2x^ + 8x - 2z £ 28 683 1
2 " 699

700

700.5 .5

z
2

- w
2

<_ .6 701 1

-x
2
+ 8x

3
+ 2z

2
- v

2
<_ 8.5 729 29

1

1

1

h Z
2

W
l

w
2

oooo
.6

1 .4

13 12.4
14 13.4

.5 16.5 15.9
1 19 18.4 8.5
1 .6 19 18.4 8.5
1 1 19 .4 18.4 8.5
1 103 10.5 102.4 9.9
1 217 1 216.4 .4

1 226.6 .6 226
322.6 .6 322
337 336.4
349 348.4
350 349.4

352.5 351.9

355 354.4 8.5

(seven more iterations)

1 495 19 494.4 18.4 484.5 8.5

-x
2
+ 8x_ + z_ <_ 1

-x
2

- 9x- + 2z
2

<_ .1
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